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Abstract

Laminar natural convection flow in a square enclosure having thick conducting walls has been analysed numerically.
Enclosing walls are considered to have finite conductive properties. Problem has been analysed using control volume
approach and employing ghost nodes at the solid fluid interface. Outsides of the walls are kept at constant temperature.
Square cavity is assumed to be filled with a Bousinessq fluid with a Prandtl number of 7.0 containing uniform volu-
metric sources. Rayleigh number is varied from 107 to 10'2. For special cases, benchmark results compare very well with
the results from open literature. Isotherms, streamlines and wall Nusselt numbers are obtained and scrutinised. Results
show a significant change in the buoyant flow parameters as compared to conventional non-conjugate investigations.
Especially, it has been shown that walls having high thermal diffusivity are much better suited, if the cooling of the

enclosed fluid is intended. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Natural convection in enclosures has attracted con-
siderable interest of investigators. Applications of such
analysis range from building design, design of furnaces,
design of nuclear reactors and others. Analysis of
buoyant flow in internally heated enclosures is especially
useful for nuclear and chemical industries.

Many experimental and numerical studies are avail-
able in open literature for buoyant flows in different
types of cavities containing volumetric heat sources.
Steinberner et al. [1] reported an experimental study of
natural convection heat transfer with internal heat
sources for a Ra number varying from 5 x 10" to
3 x 1013, Liagat and Baytas [2] reported detailed anal-
ysis of high Rayleigh number natural convection flow in
a square cavity and buoyant flow for Rayleigh numbers
from 107 to 10'> was analysed. Kulacki et al. [3] inves-
tigated the natural convection in a horizontal fluid layer
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containing internal heat sources, the experimental ob-
servations were carried out for Ra number from 114.0 to
1.8 x 10°. Emara et al. [4] performed a numerical anal-
ysis of a heat generating fluid layers for a Ra number
range of 5.0 x 10* to 5.0 x 10%. Tzanos et al. [5] per-
formed a numerical simulation of natural convection in
a cylindrical pool of heat generating fluid, the analysis
was carried out for Ra numbers from 1.33 x 10° to
8.69 x 10'!. Bergholz [6] solved boundary layer equa-
tions analytically to study the natural convection in a
heat generating fluid in a closed Cartesian cavity.
Boundary layer analysis was used to obtain the equa-
tions valid near the walls and corresponding system of
equations valid in the core of the cavity. May [7] pre-
sented a detailed numerical investigation of buoyant
flow in a square enclosure having internal heating
sources for a Ra number range of 10* to 1.5 x 10°.
Baytas [8] analysed the effect of periodic sources on the
buoyancy driven flow and heat transfer characteristics.
An experimental study to analyse the effect of inclina-
tion angle upon buoyant flow was reported by Lee et al.
[9], system was analysed for a square cavity with uni-
form internal sources for Ra number from 1.0 x 10* to
1.5 x 10°. Nourgaliev et al. [10] numerically analysed the
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Nomenclature

A the ratio of thermal diffusivities, o /o

Co specific heat at constant pressure (kJ/kg K)
D horizontal/vertical dimension of the cavity (m)
g gravitational acceleration (m/s?)

K the ratio of thermal conductivities (ky /kr)

&

thermal conductivity of the wall (W/m K)
ke thermal conductivity of the fluid (W/m K)
Nu,  average Nusselt number, Eq. (9)

Nu;  local Nusselt number, Eq. (8)

n direction normal to the wall

Pr Prandtl number, (= v/x)

q" uniform volumetric heat source (W/m?)
Ra  Rayleigh number, (= gfq" D’ /kcov)

S; spatial position, Eq. (10)

t; physical time (s)

t thickness of the wall (m)

T dimensional temperature (K)

AT  reference temperature (K)

u,v  velocity components in x, y directions (m/s)

U,V dimensionless velocity components in X,Y
directions

x,y  Cartesian coordinates (m)

X,Y dimensionless Cartesian coordinates

Greek symbols

Oy thermal diffusivity of the wall (m?/s)

o thermal diffusivity of the fluid (m?/s)

ot rate of grid stretching, Eq. (10)

p coefficient of thermal expansion of the fluid
(K™

0 dimensionless temperature

v kinematic viscosity of the fluid (m?/s)
0 density of the fluid (kg/m?)

T dimensionless time

Subscripts

i,j grid points indices

w value on the wall

natural convection inside a rectangular cavity containing
heat generating fluid.

In all above mentioned studies walls are considered to
be isothermal and of zero thickness thus neglecting the
conduction in the wall. But in practical cases all enclo-
sures have somewhat thick walls with finite conductivi-
ties, leading to conjugate problem. Most of the conjugate
heat transfer analysis that has been performed to date
includes very simple geometries, such as flow between
heated parallel plates and axisymmetric flow in a heated
pipe. A review of some of these studies has been pre-
sented by WanLai et al. [11]. Kaminski et al. [12] nu-
merically analysed the effect of conduction in one of the
vertical walls on natural convection flow in a square en-
closure. The results were compared with the results ob-
tained from approximate methods and with empirical
correlation, which were in good agreement. This study
has been utilised for benchmarking in the present anal-
ysis, which shows a good agreement between both results.

Main aim of the present analysis is to investigate the
nature of the buoyant flow in a square enclosure when
all the four containing walls are thick and have finite
conductive properties.

2. Mathematical formulation

Fig. 1 shows the details of the physical situation to be
analysed. Cavity is square and all the walls are thick
having constant outside temperature, i.e., rigid walls
with finite conductivities and all velocities are zero at the
walls (non-slip boundary condition). The internal heat

A ¢
Tw - q" Tw
g
<« D 5
X,u
—
0 Tw

Fig. 1. Schematic diagram of the physical situation.

source is distributed uniformly within the cavity. The
flow is considered to be laminar two-dimensional (2D).
The fluid is Newtonian and Bousinessq approximation is
invoked for the fluid density, all other properties are
assumed to be constant.

The governing dimensionless equations are unsteady
Navier-Stokes and energy equations for laminar free
convection as given below.

Equations for fluid region of the enclosure:

U U U 0P P,
e T X T ey (1)
14 orv oV orP

—+ U+ V== V40, (2

o TP T e T T T (Rap”
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LA A
ot )¢ oY (RaPr)*®

V20 + (RaPr)™'°.  (3)

Equation for solid region of the enclosure: The two-
dimensional temperature distribution in the walls is
governed by the heat conduction equation, which in the
dimensionless form is given below

00 oy 1 )
—=——>-=V"0. 4
ot o (Rapr)Z/SV 0 (4)

These equations has been non-dimensionalised by using
non-dimensional variables as listed below:

X,y u,v
X7 Y)= ’ ) = - /5>
W= ) (o/D)(RaPr)*’*
T — TW t;o 2/5
0="—7" ©=15(RaP)", (5)
_ pD2 _ q///DZ
P02 (RaPr)*’ ke(RaPr)'”

The corresponding initial and boundary conditions are:

for 1< 0 for whole space 0 =U =V =0,
fort>0:U =7V =0 at all walls and in solid region,
fort>0:0=0atX=0,1.1and Y =0,1.1

(6)

At the interface the temperature and the heat flux must
be continuous. The latter condition could be expressed
as

00 ky (00
(a>ﬂuid_k_f<a)wa]l7 (7)

where n is in X or Y direction (normal to the interface).
Heat transfer local Nusselt numbers are defined by
the following expression:

2.1. Parameters of the problem

The complete conjugate problem is governed by five
dimensionless variable parameters. These are the Ray-
leigh number Ra, the Prandtl number Pr, the dimen-
sionless wall thickness /D, the conductivity ratio K and
thermal diffusivity ratio A. For the present analysis Pr
number was taken fixed as 7.0 while Ra number was
varied from 107 to 10'2. Dimensionless thickness ratio
was kept constant as 0.05. For the present analysis three
separate cases were studied depending upon the values
of conductivity ratio and thermal diffusivity ratio. Table
1 summarises these cases and respective variable values.
Case 2 was considered to represent the stainless steel
(SS-304) wall material and water as inside fluid. Prop-
erties for these materials were taken to be constant at
20°C.

3. Solution procedure

Present analysis is based upon control volume
method to discretise the governing non-dimensional
equations as discussed by Patankar [13]. Staggered grid
procedure was used in primitive variables with a Power
Law differencing scheme for convection terms, for the
fluid domain. To handle the pressure, temperature and
velocity coupling of governing equations, SIMPLER
algorithm was utilised. The method was applied to
conjugate problem by employing ghost nodes at the fluid
solid interface as described by WanLai et al. [11]. In this
method the flow in the cavity and conduction in the
walls are solved simultaneously. This is achieved by
employing the ghost nodes at the solid fluid interface, as
shown schematically in Fig. 2. The energy and mo-
mentum equations were solved by alternating direction
implicit (ADI) method. ADI lead to triangular matrix
which was easy to solve with tri-diagonal matrix al-
gorithm (TDMA) as described by Versteeg [14]. Pressure
correction equation used in SIMPLER algorithm was
solved by point successive overrelaxation (PSOR) pro-
cedure. Optimum over-relaxation parameter for the
pressure correction equation was found to be 1.93 for a
non-uniform grid of 71 x 71. For each wall total 10
grids were used inside the solid region while for fluid
region 51 grids were provided. High density of grids was
provided near the solid fluid interface in order to resolve

Max. Ra no. considered

Comments

a0
Nuy = | — 8
: on |, ®)
The average Nusselt numbers are defined as follows:
1.05
o0
Nu, = / —| dn, 9)
00s |Only
where n denotes the X or Y direction.
Table 1
Summary of different cases analysed for the conjugate problem
K A
Case 1 1.0 1.0 1.0 x 10°
Case 2 21.0 24.0 1.0 x 10"
Case 3 00 - 1.0 x 102

Fluid and solid are same
Solid - stainless steel; fluid — water
Non-conjugate problem
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Fig. 2. Schematic diagram showing main and ghost nodes.

the boundary layer properly. The non-uniformity of the
grid is described by the relation, Baytas [8]

Si+1 :Si+O(iA7 (10)

where S; represents the spatial location of the grid line,
A(= 0.005) the step size and o the stretching param-
eter. The density of the grid is higher near the walls
where sharp gradients of temperature and velocity are

expected. Accuracy tests for mesh sensitivity analysis
of two- dimensional square cavity (non-conjugate)
were performed for flow domain in Liagat and Baytas
[2] for high Ra number range of 107-10'2. Optimisa-
tion of the results upon the time step was performed
and a suitable time step was selected for each Ra
number. The convergence of the pressure correction
equation was declared when the following criterion was
satisfied

>

i

<107°.

n+-1 n
P[.j —Pij

The convergence of computations is established by
utilising the following relation for the temperature dis-
tribution

D

where T« is the maximum temperature in the cavity for
each time step.

n+1 n
Ti,j - T”

T <1074,

3.1. Benchmark solutions

Accuracy of the program developed by the authors
was checked by preparing the benchmark solutions
both for non-conjugate and conjugate problems. In
case of non-conjugate analysis, well-known benchmark
solution of Vahl Davis [15] was used for low Ra
numbers. Results from Lage et al. [16] were utilised for
benchmarking at high Ra number range. These
benchmark results are shown in Table 2. For conjugate
problem benchmark solution has been obtained by

Table 2

Comparison of the present numerical solution with some previous numerical average Nusselt numbers
Ra Grid Lage et al. [16] Vahl Davis [15] Present
104 41 x 41* 2.242 2.254
10° 41 x 41* 4.564 4.616
10 41 x 41* 9.2 9.27 8.973
107 51 x 51° 17.9 17.051
108 51 x 51° 31.8 32.811
10° 51 x 51° 62.7 68.381

4 Uniform grid.
° Non-uniform grid (o, = 1.117).

Table 3
Benchmark solution for conjugate problem
Gr K Kaminski et al. [12] Nu, Present Nu,
1 x 103 1.0 0.87 0.877
00 1.06 1.066
1 x 10° 1.0 2.08 2.082
00 4.08 4.122
1 x 10° 1.0 2.87 2.843
00 7.99 8.066
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using results of Kaminski et al. [12]. Table 3 shows the
excellent comparison between the results. Liagat and
Baytas [2] also prepared a benchmark solution for
validation with the well-known experimental study of
Steinberner [1].

4. Results and discussion
During present analysis of the conjugate problem

different cases and respective maximum Ra number
considered are summarised in Table 1.

030———030

4.1. Isotherms and streamlines

For Ra = 107 isotherms and streamlines obtained for
the three cases are shown in Fig. 3. A low temperature
dip near the upper left corner is visible in Fig. 3(a); this
dip varies in position and magnitude with time creating
oscillations in the flow and temperature fields. Fig. 3(b)
indicates for the result of case 2. At Ra = 107, most
developed flow pattern is obtained for case 3 as is shown
in Fig. 3(c). Maximum dimensionless temperature inside
the enclosure is obtained for case 1 (Fig. 3(a)), advo-
cating poor heat transfer from the containing walls.

Fig. 3. Isotherms and streamlines for Ra = 107: (a) case 1; (b) case 2; (c) case 3.
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@)

(b)

Fig. 4. Isotherms and streamlines for Ra = 5.0 x 10': (a) case 2; (b) case 3.

Whereas the low value of 6, is obtained for case 2
(Fig. 3(b)), indicating the efficient heat conduction from
the solid walls. Streamlines in Fig. 3 also declare the same
flow and heat transfer behaviour as discussed above.

2.0

1.6

1.2+

0.0 ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘
0.00.10.20.30.40.50.60.70.80.91.01.1
X

Fig. 5. Temperature distributions across the enclosure at
Y = 0.55 for Ra = 10°.

Fig. 4 shows the isotherms and streamlines at
Ra = 5.0 x 10" for the cases 2 and 3. Temperatures in
Figs. 4(a) and (b) are stratified in lower half of the en-
closure. The flow is mainly located in the upper half of

1.0

0.9 —

0.8 —

0.7 —

D 0.6

0.5 —

0.4 —

0.3 —

e I L I R B N I R R R B
0.00.10.20.30.40.50.60.70.80.91.01.1
X, Y

Fig. 6. Variation of interface temperature along the enclosure
walls for Ra =108, 4 = 1.0, K = 1.0.
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the enclosure in Fig. 4(b). Thus maintaining the tem-
perature stratification in the lower half of the Fig. 4(b).

In Fig. 5, temperature distribution across the enclo-
sure at ¥ = 0.55 for Ra 10® has been illustrated. Much
higher temperatures are obtained for case 1, while lowest
temperatures are obtained for case 3. This indicates the
difference of the heat transfer across the solid walls for
the two cases. There is a large temperature difference
across the wall for case 1, which reduces the heat flow
through the wall. Temperature variation at interface is
smooth for case 1 while it shows a significant change for
cases 2 and 3. This is due to the difference of conduc-
tivity ratios for these cases.

0.10—

0.05+

-0.05—

-0.10—

-0.15 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘
0.00.10.20.30.40.50.60.70.80.91.01.1
X

Fig. 7. Variation of V with X co-ordinate at ¥ = 0.55 for
Ra = 108, for three cases.

For case 1, interface temperature distribution along
the four walls for Ra = 10 have been shown in Fig. 6.
Maximum temperature is obtained along the top wall
while lowest temperature is obtained along the bottom
wall. For side walls the temperature varies from that of
bottom wall at lower end up to that of the top wall at the
upper end. A dip in the top interface temperature indi-
cates the position of the descending cold lobe of the
fluid. Vertical velocity profiles at ¥ = 0.55 are shown in
Fig. 7 for all three cases, at Ra = 10%. Velocity distri-
butions clearly show the descending boundary layers
along the side walls. Maximum descending velocities
along the side walls are obtained for case 2. Thus

35

30 —

25 —

20 —

15 —

10 —

Nu,

0 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘
0.00.102030405060.708091.01.1
X

Fig. 8. Distribution of Nu; at the top wall for the three cases for
Ra =108,

Table 4
Summary of final results for present analysis
Ra K Nu,
Top Sides Bottom

1.0 x 107 1.0 12.37 10.43 5.67
21.0 12.53 10.70 4.87
00 13.53 10.29 4.80

1.0 x 10 1.0 21.08 18.47 9.28
21.0 22.31 18.06 6.02
00 23.14 17.56 5.87

1.0 x 10° 1.0 35.92 35.72 23.89
21.0 42.57 33.05 7.43
00 33.61 40.30 7.47

1.0 x 101 21.0 76.61 61.84 12.43
00 76.73 63.08 12.49

5.0 x 10'° 21.0 103.42 95.03 30.32
00 108.76 97.12 33.68

1.0 x 10" 21.0 123.99 108.55 46.06
00 123.82 113.93 54.66

1.0 x 102 00 187.48 183.80 146.62
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indicating the efficiency of the heat extracted by the solid
walls from the descending fluid.

4.2. Nusselt number

Local top wall nusselt numbers at Ra = 108 for the 3
cases considered are shown in Fig. 8. Maximum Ny is
obtained for case 2, indicating sharp wall temperature
gradient for this case. Nu, values for the three cases and
the simulations performed during present analysis are
summarised in Table 4. As expected, Nu, increases as Ra
number is increased for all cases.

5. Conclusions

Transient conjugate free convection analysis for a
square enclosure having thick walls has been performed.
Results indicate a strong effect of the wall conduction
for thick walled enclosure. It has been shown that a
higher value of diffusivity ratio plays a significant role in
cooling the fluid contained in the enclosure along with
the conductivity ratio. Realistic values of conductivity
ratio and thermal diffusivity ratio resulted in much lower
fluid temperatures even when compared with very high
conductivity ratio (co) (cases 2 and 3, respectively). Flow
patterns and isotherms for conjugate analysis show a
great difference from that of conventional non-conjugate
solutions reported in the open literature.

The main conclusion reached in the present study is
about the importance of the conjugate analysis of the
thick walled problems as it may give qualitatively dif-
ferent results from non-conjugate analysis.
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